Single-photon atomic cooling.
نویسندگان
چکیده
We report the cooling of an atomic ensemble with light, where each atom scatters only a single photon on average. This is a general method that does not require a cycling transition and can be applied to atoms or molecules that are magnetically trapped. We discuss the application of this new approach to the cooling of hydrogenic atoms for the purpose of precision spectroscopy and fundamental tests.
منابع مشابه
Coherent Transport of Single Photon in a Quantum Super-cavity with Mirrors Composed of Λ-Type Three-level Atomic Ensembles
In this paper, we study the coherent transport of single photon in a coupled resonator waveguide (CRW) where two threelevel Λ-type atomic ensembles are embedded in two separate cavities. We show that it is possible to control the photon transmission and reflection coefficients by using classical control fields. In particular, we find that the total photon transmission and reflection are achieva...
متن کاملSingle-photon cooling in a wedge billiard
Single-photon cooling (SPC), noted for its potential as a versatile method for cooling a variety of atomic species, has recently been demonstrated experimentally. In this paper, we study possible ways to improve the performance of SPC by applying it to atoms trapped inside a wedge billiard. The main feature of the wedge billiard for atoms, also experimentally realized recently, is that the natu...
متن کاملSingle-photon molecular cooling
We propose a general method to cool the translational motion of molecules. Our method is an extension of single photon atomic cooling which was successfully implemented in our laboratory. Requiring a single event of absorption followed by a spontaneous emission, this method circumvents the need for a cycling transition and can be applied to any paramagnetic or polar molecule. In our approach, t...
متن کاملOptomechanical cavity cooling of an atomic ensemble.
We demonstrate cavity sideband cooling of a single collective motional mode of an atomic ensemble down to a mean phonon occupation number ⟨n⟩(min)=2.0(-0.3)(+0.9). Both ⟨n⟩(min) and the observed cooling rate are in good agreement with an optomechanical model. The cooling rate constant is proportional to the total photon scattering rate by the ensemble, demonstrating the cooperative character o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physical review letters
دوره 100 9 شماره
صفحات -
تاریخ انتشار 2008